Synthesis of 1-alkyl-1,2,4-triazolium 4-nitroimides by alkylation of 4-nitramino-1,2,4-triazole salts

O. P. Shitov, a^* V. L. Korolev, b V. S. Bogdanov, a^{\dagger} and V. A. Tartakovsky a

aN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences,
 47 Leninsky prosp., 119991 Moscow, Russian Federation.
 Fax: +7 (095) 135 5328. E-mail: _atg@mail.ru
 bMari State University,
 1 pl. Lenina, 424001 Yoshkar-Ola, Russian Federation.
 Fax: +7 (836 2) 55 4581. E-mail: organic@marsu.ru

A method for the synthesis of 1-alkyl-1,2,4-triazolium 4-nitroimides was developed based on alkylation of 4-nitramino-1,2,4-triazole Na and Ag salts with halo- and dihaloalkanes.

Key words: 1-substituted 1,2,4-triazolium 4-nitroimides, 4-nitramino-1,2,4-triazole salts, alkylation.

Earlier, ^{1,2} 1-alkyl-1,2,4-triazolium *N*-nitroimides were synthesized by nitration of 1-substituted 4-amino-1,2,4-triazolium nitrates.

Alternatively, 1-alkyl-1,2,4-triazolium 4-nitroimides can be obtained by alkylation of 4-nitramino-1,2,4-triazole salts. Alkylation of 4-nitramino-1,2,4-triazole Na salt (1) with methyl *p*-toluenesulfonate and benzyl bromide is known to afford the corresponding 1-substituted 1,2,4-triazolium *N*-nitroimides.^{3,4} In the present work, we showed that this reaction is of general character and can be used in the preparation of various 1-substituted 1,2,4-triazolium 4-nitroimides (Table 1).

Results and Discussion

We studied reactions of 4-nitramino-1,2,4-triazole Na and Ag salts (1 and 2) with alkyl halides, α - and β -halogeno ethers, β - and γ -halogeno alcohols, chloroacetonitrile, bromoacetone, and ethyl bromoacetate. The reactions were carried out in dipolar aprotic solvents (DMF, MeCN, and DMSO); in some cases, phase-transfer catalysis was used.

Scheme 1

 $M^+ = Na^+ (1), Ag^+ (2)$ R = Me (3), Et (4) It was found that MeI reacts with salts 1 and 2 in DMF even at room temperature to give 1-methyl-1,2,4-tri-azolium 4-nitroimide (3) (Scheme 1).

Other mono- and dihaloalkanes react with salts 1 and 2 under more drastic conditions. For instance, ethyl bromide reacts with salt 1 in DMSO or DMF at $50-60\,^{\circ}\text{C}$ to give 1-ethyl-1,2,4-triazolium 4-nitroimide (4). The reaction of salt 1 with $\text{Br}(\text{CH}_2)_2\text{Br}$ occurs only at $100\,^{\circ}\text{C}$, affording bisalkylation product (5) in 28% yield (Scheme 2).

Scheme 2

1
$$\xrightarrow{\text{BrCH}_2\text{CH}_2\text{Br}}$$
 $O_2\text{N-N}^ O_2\text{N-N}^-$

The yield of compound 5 was increased to 40% by alkylation of salt 1 with 1,2-dibromoethane under conditions of phase-transfer catalysis $(H_2O/Br(CH_2)_2Br)$, tetrabutylammonium iodide as a catalyst). Salt 1 proved to be inert to dibromomethane and diiodomethane under the conditions studied, which is probably due to a high stability of geminal dihaloalkanes⁷.

 α -Halogeno ethers are much more reactive in alkylation. Salts **1** and **2** react with chlorodimethyl, chloromethyl 2-fluoro-2,2-dinitroethyl, and bis(chloromethyl) ethers at 20 °C to give the corresponding alkylation products **6–8** (Scheme 3).

 β - and γ -Halogeno ethers are less reactive toward salts 1 and 2. The reaction of Na salt 1 with an excess of

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 665–669, March, 2003.

[†] Deceased.

M = Na (1), Ag (2)R = Me (6), CH₂C(NO₂)₂F (7)

2,2'-dichlorodiethyl ether at 90–100 °C predominantly gave monoalkylation product 9; under these conditions, the yield of bisadduct 10 does not exceed 5% (Scheme 4).

Scheme 4

The yield of bisadduct **10** was increased to 36% by carrying out the reaction at 150 °C.

Alkylation of salt **1** with 3-chloropropane-1,2-diol at 110—120 °C afforded *N*-nitroimide **11** in 51% yield (Scheme 5).

Scheme 5

1
$$O_2N-N^-$$

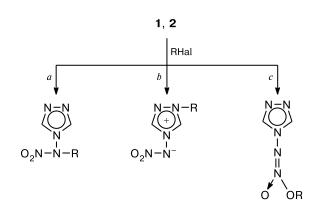
CH-CH₂
 O_2N-N^-

CH-CH₂
 O_2N-N^-

CH-CH₂
 O_2N-N^-

2,2-Bis(chloromethyl)propane-1,3-diol and 2-bromomethyl-2-hydroxymethylpropane-1,3-diol are inert under the conditions studied. The reactions of salt 1 with chloroacetonitrile, bromoacetone, and ethyl bromo-

acetate at 40-50 °C yielded the corresponding *N*-nitroimides **12**—**14** containing functionalized substituent R (Scheme 6).


Scheme 6

1 RHal
$$O_2N-N^-$$

 $R = CH_2CN (12), CH_2C(O)Me (13), CH_2C(O)OEt (14)$

Theoretically, alkylation of ambident 4-nitramino-1,2,4-triazole anion can occur at three reaction centers, namely, (a) N atom of the amino group, (b) N atoms of the triazole ring, and (c) O atom of the nitro group (Scheme 7).

Scheme 7

In all the above examples, alkylation of both salts 1 and 2 selectively follows pathway b. The structures of the compounds obtained were determined from their IR and ¹H and ¹³C NMR spectra. The structures of compounds 11 and 13 were confirmed by their independent syntheses.² The IR spectra of the compounds obtained contain absorption bands at 1280—1300 and 1390—1415 cm⁻¹ characteristic of an N-nitroimido group bound to a heterocycle (Table 2).4 Their spectra show no vas bands for the nitramino group at 1550—1620 cm⁻¹. In the ¹H NMR spectra of N-nitroimides 3-14 (Table 2), signals for the protons of the triazole ring are nonequivalent and shifted downfield ($\delta_{H(5)}$ 10.1–10.4, $\delta_{H(3)}$ 9.2–9.4) relative to signals for the protons in the starting salt (δ 8.33), which is evidence in favor of the imide structure. The same conclusion follows from the ¹³C NMR data. In the compounds synthesized, the C(3) and C(5) atoms of the triazole ring are nonequivalent unlike the starting salt $(\delta_{C(3)} = \delta_{C(5)} = 142.00$, Table 2).

Table 1. Characteristics of 1,2,4-triazolium 4-nitroimides

Com- pound	Foun Calcı	ud ulated (%)		Molecular formula
	С	Н	N	
3	_	_	_	$C_3H_5N_5O_2$
4	3 <u>0.27</u> 30.57	4.45 4.46	44.67 44.59	$C_4H_7N_5O_2$
5	25.35 25.40	2.82 2.70	49.30 49.39	$C_6H_8N_{10}O_4$
6	27.75 28.08	<u>4.04</u> 3.87	<u>40.46</u> 40.44	$C_4H_7N_5O_3$
7	20.34 21.18	2.03 2.33	33.22 33.33	$C_5H_6FN_7O_7$
8	24.00 24.11	2.67 2.58	46.87 46.25	$C_6H_8N_{10}O_5$
9	30.57 30.58	<u>4.27</u> 4.22	29.72 29.42	$C_6H_{10}CIN_5O_3$
10	29.27 29.23	3.66 3.63	<u>42.68</u> 42.77	$C_8H_{12}N_{10}O_5$
11	<u>29.56</u> 29.91	4.43 4.63	34.48 34.50	$C_5H_9N_5O_4$
12	28.55 28.57	2.35 2.38	50.44 50.00	$C_4H_4N_6O_2$
13	32.43 32.72	3.78 3.77	37.84 38.03	$C_4H_7N_5O_3$
14	33.01 33.48	<u>4.09</u> 4.19	32.41 32.56	$C_6H_9N_5O_4$

Note. Found/calculated (%): F, 6.44/6.51 (7); C1, 15.07/14.26 (9).

Thus, the alkylation of 4-nitramino-1,2,4-triazole salts is a general method for the synthesis of various 1-substituted 1,2,4-triazolium 4-nitroimides.

Experimental

Melting points were determined on a Boetius microscope stage. ^{1}H and ^{13}C NMR spectra were recorded on a Bruker WM-250 instrument; ^{1}H and ^{13}C chemical shifts are referenced to DMSO-d₆ (δ_{H} 2.5; δ_{C} 39.50). IR spectra were recorded on a UR-20 instrument (KBr pellets).

1-Methyl-1,2,4-triazolium 4-nitroimide (3). *A.* A suspension of salt **2** (0.30 g, 1.97 mmol) and MeI (1.50 mL, 10.5 mmol) in 5 mL of DMF was stirred at 20 °C for 4 h. The precipitate was filtered off and the filtrate was diluted with 50-70 mL of Et₂O. The precipitate that formed was filtered off to give product **3** (0.17 g, 93%), m.p. 169-170 °C (decomp., from water) (*cf.* Ref. 3: m.p. 171-172 °C (decomp., from water)). A mixture of compound **3** with an authentic sample did not depress the melting point.

B. A solution of salt 1 (0.50 g, 3 mmol) and MeI (0.19 mL, 3 mmol) in 3 mL of DMF (or DMSO) was left at 20 °C for 17 h and then concentrated *in vacuo*. Ethanol was added to the residue, and the precipitate (0.32 g) was filtered off and recrystallized from EtOH. The yield of compound 3 was 0.25 g (64%). The product was identical with that obtained by procedure A.

1-Ethyl-1,2,4-triazolium 4-nitroimide (4). *A.* A solution of salt **1** (3.50 g, 20.7 mmol) and EtBr (1.60 mL, 20.7 mmol) in 25 mL of DMSO was stirred at 20 °C for 2 h and at 50—60 °C for 3 h and poured into a mixture of acetone (150 mL) and ether (30 mL). The precipitate of NaBr was filtered off. The filtrate

Table 2. IR and NMR (DMSO-d₆) data for 1,2,4-triazolium N-nitroimides

Compound -	IR (KBr), v/cm ⁻¹		NMR, δ (J/Hz)						
	NO ₂ ^a	Others	¹H			¹³ C			
			HC(3) (s, 1 H)	HC(5) (s, 1 H)	Other H atoms	C(3)	C(5)	Other C atoms	
1	_	_	8.33	8.33	_	142.0 (dd, ${}^{1}J = 213.6$, ${}^{3}J = 3.7$)	142.0 (dd, ${}^{1}J = 213.6$, ${}^{3}J = 3.7$)	_	
3	_	_	9.2	10.15	3.35 (s, 3 H, Me)	143.7 (dd, ${}^{1}J = 222.4$, ${}^{3}J = 5.5$)	141.6 (ddq, ${}^{1}J = 223.4$, ${}^{3}J = 6.5$, ${}^{3}J = 3.2$)	38.8 (q, Me, $J = 144.3$)	
4	1390, 1300		9.24	10.23	1.5 (t, 3 H, Me); 4.4 (q, 2 H, CH ₂)	_	_	_	
5	1414, 1297		9.25	10.20	4.95 (s, 4 H, (CH ₂) ₂)	_	_	_	
6	1410, 1290		9.42	10.53	3.52 (s, 3 H, Me); 5.75 (s, 2 H, CH ₂)	144.5 (dd, ${}^{1}J = 227.5$, ${}^{3}J = 2.7$)	142.5 (ddq, ${}^{1}J = 228.4$, ${}^{3}J = 3.7$, ${}^{3}J = 2.7$)	57.6 (qt, Me, ${}^{1}J = 143.3 \pm 0.9$, ${}^{3}J = 6.5$)	

(to be continued)

Table 2 (continued)

Com-	IR (KBr), v/cm^{-1}		NMR, δ (J/Hz)						
pound -	NO ₂ ^a	Others	¹ H			¹³ C			
			HC(3) (s, 1 H)	HC(5) (s, 1 H)	Other H atoms	C(3)	C(5)	Other C atoms	
7	1405, 1280	1590, 1390, 1310 (NO ₂)	9.34	10.32	5.17 (d, 2 H, CH ₂ C, $J_{H,F} = 18.0$); 5.85 (s, 2 H, CH_2N)	144.5 (dd, ${}^{1}J = 229.3$, ${}^{3}J = 6.5$)	142.7 (dd, ${}^{1}J = 230.5$, ${}^{3}J = 2.8$)	67.0 (dtt, CH ₂ C, ${}^{1}J_{C,F} = 18.5$, ${}^{1}J = 155.4$, ${}^{3}J = 6.5$); 80.2 (tt, CH ₂ N, ${}^{1}J = 168.3$, ${}^{3}J = 2.8$); 120.2 (d, CF, ${}^{1}J_{C,F} = 291.0$)	
8	1400, 1290		9.27	10.43	5.93 (s, 4 H, CH ₂)	144.6 (dd, ${}^{1}J = 229.3$, ${}^{3}J = 6.5$)	142.8 (ddt, ${}^{1}J = 229.3$, ${}^{3}J = 1.8$, ${}^{3}J = 3.7$)	79.1 (tt, CH ₂ , ${}^{1}J = 168.3, {}^{3}J = 6.5$)	
9	1410, 1285		9.23	10.20	3.67 (t, 4 H, CH ₂ CH ₂); 3.90 (t, 2 H, CH ₂); 4.53 (t, 2 H, CH ₂)	_	_	_	
10	1405, 1295		9.23	10.27	3.90, 4.47 (both t, 2 H each, CH ₂)	143.7 (dd, ${}^{1}J = 221.9$, ${}^{3}J = 5.5$)	141.6 (dd, ${}^{1}J = 229.3$, ${}^{3}J = 3.7$)	57.1 (t, CH ₂ , J = 145.2); 66.7 (t, CH ₂ , $J = 142.2$)	
11	1400, 1295		9.22	10.16	3.30–3.52 (m, 2 H, CH ₂); 3.88 (m, 1 H, CH); 4.20–4.50 (m, 2 H, CH ₂); 4.96 (t, 1 H, OH); 5.36 (d, 1 H, OH)	144.0 (dd, ${}^{1}J = 227.5$, ${}^{3}J = 6.5$)	141.9 (ddt, ${}^{1}J = 229.3$, ${}^{3}J = 2.8$, ${}^{3}J = 3.7$)	55.7 (t, CH ₂ , ${}^{1}J = 142.4$); 63.5 (t, CH ₂ , ${}^{1}J = 141.5$); 69.1 (d, CHOH, ${}^{1}J = 142.4$)	
12	1415, 1300	2270 (C≡N)	9.38	10.30	5.83 (s, 2 H, CH ₂)	144.4 (dd, ${}^{1}J = 229.3$, ${}^{3}J = 5.5$)	142.5 (br.d, $J = 232.1$)	39.5 $(CH_2)^b$; 113.2 (t, $C \equiv N$, $J = 7.0$)	
13	1400, 1290	1740 (C=O)	9.30	10.10	2.23 (s, 3 H, Me); 5.54 (s, 2 H, CH ₂)	143.8 (dd, ${}^{1}J = 228.3$, ${}^{3}J = 6.1$)	142.6 (ddt, ${}^{1}J = 229.5$, ${}^{3}J = 3.7$, ${}^{3}J = 2.5$)	27.0 (q, Me, <i>J</i> = 128.2); 60.3 (t, CH ₂ , <i>J</i> = 142.8); 199.1 (C=O)	
14	1385, 1290	1750 (COO—)	9.30	10.23	1.22 (t, 3 H, Me); 4.20 (q, 2 H, CH ₂) 5.45 (s, 2 H, CH ₂)	143.9 (dd, $(^{1}J = 228.4,$ $^{3}J = 6.5)$	142.8 (dd, ${}^{1}J = 231.8$, ${}^{3}J = 2.8$)	13.8 (tq, Me, ${}^{1}J = 148.9, {}^{3}J = 4.6$); 52.5 (t, NCH ₂ , J = 147.0); 62.1 (tq, OCH ₂ , ${}^{1}J = 148.9,$ ${}^{3}J = 4.6$); 165.7 (C=O)	

^a NO₂ of the nitroimido group.

was concentrated *in vacuo*, and the residue was recrystallized from EtOH to give compound **4** (1.85 g, 56.3%), m.p. 139-140.5 °C.

B. A solution of salt 1 (0.50 g, 3 mmol) and EtBr (0.22 mL, 3 mmol) in 5 mL of DMF was stirred at 20 °C for 2 h and at 60-70 °C for 3 h. The precipitate of NaBr was filtered off. The filtrate was concentrated *in vacuo*, and the residue was recrystallized from EtOH to give compound 4 (0.27 g, 57%), m.p. 138-140 °C.

Bis(4-nitroimido-1,2,4-triazolium-1-yl)ethane (5). *A.* A solution of salt **1** (0.42 g, 2.42 mmol) and dibromoethane (0.94 g, 5.00 mmol) in 5 mL of DMF was stirred at $100\,^{\circ}\text{C}$ for 7 h, cooled, and poured into 30 mL of water. The precipitate that formed was filtered off and washed with EtOH and Et₂O. The yield of compound **5** was 0.10 g (28%), m.p. 266 °C (decomp., from water).

B. A mixture of salt 1 (4.00 g, 23.70 mmol) and TBAI (0.20 g, 0.64 mmol) was stirred in 20 mL of water and 20 mL

^b An apparent overlap with a signal for CD₃SOCD₃.

of dibromoethane at 75 °C for 24 h and cooled. The precipitate that formed was filtered off and washed with water, EtOH, and Et₂O. The yield of compound 5 was 1.34 g (40%). The product was identical with that obtained by procedure A.

1-Methoxymethyl-1,2,4-triazolium 4-nitroimide (6). A. A mixture of salt 1 (1.69 g, 10.6 mmol) and chlorodimethyl ether (0.85 g, 10.6 mmol) was stirred in 5 mL of DMF at 20 °C for 20 h. The precipitate of NaCl was filtered off. The filtrate was diluted with 20 mL of acetone and 100 mL of Et₂O. The precipitate that formed was filtered off to give compound 6 (1.30 g, 75%), m.p. 117-117.5 °C (from EtOH).

B. A mixture of salt 2 (0.09 g, 0.38 mmol) and chlorodimethyl ether (0.10 g, 1.22 mmol) was stirred in 1 mL of DMF at 20 °C for 15 min. The precipitate of AgCl was filtered off. The filtrate was diluted with a mixture of acetone (5 mL) and $\rm Et_2O$ (40 mL). The precipitate that formed was filtered off to give compound 6 (0.07 g, 98%). The product was identical with that obtained by procedure **A**.

1-(4-Fluoro-4,4-dinitro-2-oxabutyl)-1,2,4-triazolium 4-nitroimide (7). A suspension of salt 2 (0.47 g, 2.00 mmol) and chloromethyl 2-fluoro-2,2-dinitroethyl ether (0.41 g, 2.03 mmol) in 3 mL of DMF was stirred at 20 °C for 48 h. The precipitate of AgCl was filtered off, and the filtrate was concentrated *in vacuo* at 40–50 °C. The oily residue was diluted with EtOH (1–2 mL) and kept at 0 °C until crystallization started. The precipitate that formed was filtered off to give compound 7 (0.46 g, 78%), m.p. 128–128.5 °C (from EtOH).

1,3-Bis(4-nitroimido-1,2,4-triazolium-1-yl)-2-oxapropane (8). *A.* A solution of salt **1** (1.93 g, 13.00 mmol) and bis(chloromethyl) ether (0.65 g, 5.70 mmol) in 5 mL of DMF was stirred at 20 °C for 72 h. Acetone (40 mL) was added, and the precipitate that formed was filtered off and washed successively with water, EtOH, and Et₂O to give compound **8** (0.40 g, 24%), m.p. 213—215 °C (decomp., from water).

B. A solution of salt 2 (0.42 g, 1.78 mmol) and bis(chloromethyl) ether (0.10 g, 0.89 mmol) in 2 mL of DMF was stirred at 20 °C for 48 h. The precipitate of AgCl was filtered off. The filtrate was diluted with acetone (10 mL) and $\rm Et_2O$ (20 mL), and the precipitate that formed was filtered off to give compound 8 (0.16 g, 60%). The product was identical with that obtained by procedure **A**.

1-(5-Chloro-3-oxapentyl)-1,2,4-triazolium 4-nitroimide (9). A solution of salt **1** (1.69 g, 10.00 mmol) and 2,2'-dichlorodiethyl ether (7.00 g, 49.40 mmol) in 5 mL of DMF was stirred at 100 °C for 10 h and cooled. The precipitate of NaCl was filtered off. The filtrate was concentrated *in vacuo*. A small amount of EtOH was added to the oily residue, and the mixture was kept at -70 °C for 1 h. Then the solvent was rapidly decanted, and the residue was crystallized by addition of an EtOH—acetone mixture. The yield of compound **9** was 1.00 g (43%), m.p. 77—78 °C (from EtOH).

1,5-Bis(4-nitroimido-1,2,4-triazolium-1-yl)-3-oxapentane (10). A solution of salt 1 (0.84 g, 5.00 mmol) and 2,2'-di-chlorodiethyl ether (0.36 g, 2.50 mmol) in 5 mL of DMF was stirred at $148-150~^{\circ}$ C for 4 h and cooled. Acetone (50 mL) was added, and the precipitate that formed was filtered off and suc-

cessively washed with water, EtOH, and Et_2O . The yield of compound 10 was 0.30 g (36%), m.p. 189—190 °C (from EtOH—water).

1-(2,3-Dihydroxypropyl)-1,2,4-triazolium 4-nitroimide (11). A solution of salt 1 (3.38 g, 20.00 mmol) and 3-chloropropane-1,2-diol (3.50 g, 34.60 mmol) in 5 mL of DMF was stirred at 100—120 °C for 40 h and cooled. The precipitate of NaCl was filtered off. The filtrate was concentrated *in vacuo* to give an oily residue. Ethanol (10 mL) was added, and the product was precipitated with acetone (50 mL) and filtered off. The yield of compound 11 was 2.01 g (51%), m.p. 122—123 °C (from MeOH—PriOH).

1-Cyanomethyl-1,2,4-triazolium 4-nitroimide (12). A solution of salt **1** (0.50 g, 2.96 mmol) in 1.40 mL of chloroacetonitrile was stirred at 95–98 °C for 24 h and cooled. The precipitate that formed was filtered off and successively washed with water, EtOH, and Et₂O. The yield of compound **12** was 0.43 g (87%), m.p. 174–175 °C (from EtOH—water).

1-(2-Oxopropyl)-1,2,4-triazolium 4-nitroimide (13). A solution of bromoacetone (1 g, 8.20 mmol) in 5 mL of MeCN was added dropwise at 20 °C to a stirred solution of salt **1** (1.12 g, 6.65 mmol) in 5 mL of MeCN. The reaction mixture was stirred at 20 °C for 16 h and at 50 °C for 10 h and cooled. The precipitate that formed was filtered off and washed with $\rm Et_2O$. The product was extracted with boiling EtOH, and the solvent was evaporated. The yield of compound **13** was 1.17 g (96%), m.p. 153—154 °C (from EtOH).

1-Ethoxycarbonylmethyl-1,2,4-triazolium 4-nitroimide (14). A solution of salt **1** (1.00 g, 5.98 mmol) and ethyl bromoacetate (1.00 g, 6.00 mmol) in 7 mL of MeCN was stirred at 50 °C for 10 h and cooled. The precipitate that formed was filtered off and successively washed with water, EtOH, and Et₂O. The yield of compound **14** was 1.18 g (93%), m.p. 155–156 °C (from EtOH).

References

- O. P. Shitov, V. A. Vyazkov, and V. A. Tartakovsky, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1989, 2654 [*Bull. Acad. Sci. USSR*, *Div. Chem. Sci.*, 1989, 38, 2440 (Engl. Transl.)].
- O. P. Shitov, V. L. Korolev, and V. A. Tartakovsky, *Izv. Akad. Nauk, Ser. Khim.*, 2002, 464 [*Russ. Chem. Bull., Int. Ed.*, 2002, 51, 493].
- 3. H. J. Timpe, Z. Chem., 1971, 11, 340.
- 4. A. R. Katritzky and J. H. Mitchell, J. Chem. Soc., Perkin Trans. 1, 1973, 2624.
- 5. B. Chubar, *Usp. Khim.*, 1965, **35**, 1227 [*Russ. Chem. Rev.*, 1965, **35** (Engl. Transl.)].
- 6. S. A. Shevelev, *Usp. Khim.*, 1970, **39**, 1773 [*Russ. Chem. Rev.*, 1970, **39**, 844 (Engl. Transl.)].
- V. P. Ivshin, O. Ya. Yashukova, V. A. Shlyapochnikov, and V. A. Tartakovsky, *Zh. Org. Khim.*, 1983, 19, 2020 [*J. Org. Chem. USSR*, 1983, 19 (Engl. Transl.)].

Received July 8, 2002; in revised form November 10, 2002